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Abstract
We study the ratchet behaviour of polarons in diatomic molecular chains under the influence of
an external electromagnetic field which is periodic in time. We show that in asymmetric chains
a harmonic unbiased field causes a drift of polarons. This phenomenon has a threshold with
respect to the intensity and the frequency of the field. In spatially symmetric chains a harmonic
periodic electric field generates oscillations of polarons but does not result in their movement.
The polaron drift current can be induced in symmetric chains by a time periodic asymmetric
external field. This complex dynamics of polarons is generated by the interplay between the
Peierls–Nabarro barrier and dissipative effects in the chains.

(Some figures in this article are in colour only in the electronic version)

The ratchet phenomenon has recently been attracting a
great deal of attention due to its importance both for the
understanding of the functioning of biological motors and
for promising technical applications, including in molecular
motors and in nanoscale technologies. The phenomenon
involves the appearance of a directed current (drift) under the
action of stochastic or deterministic unbiased (zero-mean) ac
forces [1]. Many interesting theoretical models of ratchets have
been proposed and a large variety of experimental realizations
have become available (see, e.g., review [1] and references
therein). In particular, semiconducting heterostructures,
such as diode (n, p) junctions, semiconductor superlattices,
Josephson junction arrays, SQUID ratchets, and quantum dot
arrays with broken spatial symmetry, have been engineered
and shown to possess ratchet properties. Here we show
that the ratchet phenomenon can be realized in (quasi-)one-
dimensional molecular chains which support the existence
of self-trapped electron states. Such states, called polarons
(or condensons) and in one-dimensional systems known as
solitons, are formed as localized states of electrons due
to the electron–lattice interaction [2–4]. Their properties
have been studied in great detail both theoretically and
experimentally. The class of low-dimensional molecular
systems in which polarons exist or are predicted to exist
is quite large. It includes quasi-1D organic and inorganic
compounds (like conducting platinum chain compounds),

conducting polymers (e.g., polyacetylene [3], polypyrrole [5],
polythiophene [6]), biological macromolecules (α-helical
proteins [2], DNA [7]) etc.

Note that the necessary conditions for the ratchet effect,
both in classical and quantum systems, involve the presence of
a spatially periodic potential (ratchet potential) in the system
with dissipation and an external unbiased force periodic in
time. Some of the necessary requirements for this effect are
naturally intrinsic to solitons in molecular systems. Energy
dissipation in molecular systems is always present due to the
interaction of atoms with the many degrees of freedom of the
surrounding medium which can be considered as a thermal
bath. This is especially true for biological macromolecules in
the cellular cytoplasm. In a discrete system solitons move in
the Peierls–Nabarro potential which is periodic, with a period
equal to the lattice constant [8]. Therefore, one can expect the
ratchet phenomenon to arise in systems involving polarons.

The origin of the net motion of polarons is associated
with the breaking of the space–temporal symmetries of the
system [1, 9]. In molecular chains with a reflection symmetry,
like in a simple molecular chain [8], the Peierls–Nabarro
potential is symmetrical. This symmetry can be broken in
asymmetric chains with more complicated structure and one
can expect that such molecular chains would exhibit the ratchet
effect even under the influence of harmonic external forces.
To demonstrate this, we have performed numerical simulations
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of the polaron dynamics in asymmetric molecular chains in
the presence of an external periodic unbiased electromagnetic
field. We have considered a diatomic molecular chain that
contains two different atoms, or groups of atoms, in a unit cell,
periodically arranged along the chain axis at their equilibrium
positions, z0

n,1 = na, z0
n,2 = a(n + b), where a is the lattice

constant and b is the relative distance between the two atoms
in the unit cell.

The Hamiltonian which describes the states of extra
electrons in such a system in an external field, taking into
account the electron interaction with lattice vibrations, is
represented by a sum of terms:

H = He + Hph + He−ph + Hint. (1)

We write H in the site representation and in the nearest-
neighbour approximation and, as we consider only one extra
electron in the chain, we can omit the electron spin index. If
a†

n, j (an, j ) are creation (annihilation) operators of an electron
on the site (n, j), E j the on-site electron energy describing the
influence of the neighbouring atoms,

He =
∑

n

[E1 a†
n,1an,1 + E2 a†

n,2an,2 − Js(a
†
n,1an,2 + a†

n,2an,1)

− Jl(a
†
n,1an−1,2 + a†

n−1,2an,1)], (2)

where Js and Jl are the energies of the hopping interactions
with the nearest neighbours from the same unit cell and from
the neighbouring cell, respectively. The harmonic lattice
vibration Hamiltonian is

Hph = 1

2

∑

n

[
p2

n,1

M1
+ p2

n,2

M2
+ ws(un,1 − un,2)

2

+ wl(un,1 − un−1,2)
2

]
, (3)

where M1 and M2 are the masses of the atoms; un, j are the
longitudinal displacements of atoms from their equilibrium
positions; zn, j = z0

n, j +un, j ; pn, j are the momenta, canonically
conjugate to un, j ; ws and wl are the elasticity constants for
the interactions between, respectively, the nearest-neighbour
atoms belonging to one unit cell and to the neighbouring cells.
In the linear lattice displacement approximation the electron–
phonon interaction Hamiltonian is

He−ph =
∑

n

[[a†
n,1an,1[χl(un,1 − un−1,2) − χs(un,1 − un,2)]

+ a†
n,2an,2[χl(un+1,1 − un,2) − χs(un,1 − un,2)]]]. (4)

Here χs and χl are the coefficients of the electron–
phonon interaction between nearest neighbours. Finally, the
Hamiltonian of the interaction with the external electric field
E(t) is given by

Hint = −eE(t)
∑

n

((na − n0)a
†
n,1an,1

+ (a(n + b) − n0)a
†
n,2an,2). (5)

Next we define M = M1+M2, W = ws +wl , J = Js+ Jl ,
X = χs + χl , and

m = M1 − M2

M
, w = ws − wl

W
,

d = Js − Jl

J
, x = χs − χl

X
.

(6)

Self-trapped states of electrons in such systems are
usually described in the adiabatic approximation in which the
wavefunction of the system is represented in a multiplicative
Born–Oppenheimer form, equivalent to the semiclassical
consideration in which the vibrational subsystem is treated as
a classical one. Considering one extra electron in the chain
and using a well known approach, we obtain a system of
dynamical equations for the quasi-particle and the phonons.
For numerical simulations it is convenient to measure time,
energies and displacements in units of h̄/J , J and l =
h̄
√

2/J M , respectively. In the presence of an external electric
field E(t), we have

i
d�n,1

dt
=

[
−1 + D

2
+ (n − n0) E(t)

]
�n,1

+ 1
2 (1 + d)�n,2 + 1

2 (1 − d)�n−1,2

+ G[(1 + x)(un,1 − un,2)

− (1 − x)(un,1 − un−1,2)]�n,1,

i
d�n,2

dt
=

[
−1 − D

2
+ (n − n0 + b) E(t)

]
�n,2

+ 1
2 (1 + d)�n,1 + 1

2 (1 − d)�n+1,1

+ G[(1 + x)(un,1 − un,2)

− (1 − x)(un+1,1 − un,2)]�n,2,

d2un,1

dt2
= − C

1 − m
[(1 + w)(un,1 − un,2)

+ (1 − w)(un,1 − un−1,2)]

+ G

1 − m
[2x |�n,1|2 − (1 − x)|�n−1,2|2

+ (1 + x)|�n,2|2] − η
dun,1

dt
,

d2un,2

dt2
= C

1 + m
[(1 + w)(un,1 − un,2)

+ (1 − w)(un+1,1 − un,2)]

+ G

1 + m
[−2x |�n,2|2 + (1 − x)|�n+1,1|2

− (1 + x)|�n,1|2] − η
dun,2

dt
.

(7)

Here the intensity of the electric field E(t) is measured in units
ea/J and we have defined

G = Xl

2J
, C = h̄2W

M J 2
, D = E2 − E1

J
. (8)

The terms proportional to η in (7) describe the damping
force which models the interaction between the atoms and the
thermal bath responsible for the dissipation of the energy. In
all our simulations we have taken η = 0.2.

To study the polaron dynamics, we have calculated first
some stationary solutions of equations (7) in the absence of an
external field, i.e., by setting E(t) = 0, and then used them as
the initial conditions in the presence of the field at E(t) �= 0.
We have chosen the numerical values of the parameters (8) so
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Figure 1. Stationary distribution of the electron probability
P = |�|2 as a function of the lattice site for the parameter values
G = 0.4, C = 0.22, d = D = 0.1, x = 0.05, w = 0.15, m = 0.3.

that the stationary solution is self-trapped within few lattice
sites as is shown, for instance, in figure 1.

We have studied numerically the time evolution of such an
excitation by calculating its profile, half-width and the position
of the quasi-particle centre of mass (c.m.) for various forms
of the external periodic unbiased electric field. The field itself
does not significantly affect the profile of the soliton, though
it causes oscillations of the c.m. of the soliton and of its
width. In figure 2 we plot the c.m. coordinate as a function
of time for an asymmetric chain with nonzero asymmetry
parameters (6) in the presence of an unbiased harmonic field
E(t) = E0 sin(2π t/T ) at E0 = 0.08, T = 2000. The
figure shows very clearly that the harmonic field causes a
drift of the soliton, i.e., it generates a directed current in
the chain. A directed current of polarons under harmonic
perturbation in molecular systems is also present if there is an
asymmetry in the electronic subsystem only, i.e., when only
two parameters, d and D, are nonzero. In this case the plot
of the c.m. coordinate as a function of time looks like the one
shown in figure 2 but is not presented here for lack of space.

As can be seen from figure 2, in an asymmetric chain in
the electric field periodic in time, the soliton trajectory is a sum
of a drift and oscillations with a certain amplitude. This effect
has a threshold with respect to the intensity of the field and
its period, i.e., the effect takes place provided that E > E0,cr,
T > Tcr. The value of Tcr depends on the field intensity, for
instance, for E0 = 0.08 and for the given chain parameters
Tcr = 400.

Note that chains with only one nonzero anisotropy
parameter, d or D, possess a reflection symmetry. In such cases
a harmonic electric field causes polaron oscillations around its
initial position but does not generate a drift. Instead, one can
expect the ratchet phenomenon to take place in a symmetric

Figure 2. Position of the c.m. of the soliton as a function of time in
an external harmonic field at G = 0.4, C = 0.22, E0 = 0.08,
T = 2000 d.u. in an asymmetric chain with d = D = 0.1, x = 0.05,
w = 0.15, m = 0.3.

chain in an external unbiased field, periodic in time, if this field
breaks the time-reversal symmetry, namely, if there is no time
τ such that E(τ + t) = E(τ − t) for all t . For instance, this
can be a non-harmonic, e.g., biharmonic or, more generally,
multi-harmonic field at proper values of the harmonic phases.

Instead, the ratchet phenomenon takes place in an external
unbiased periodic field asymmetric in time. This is shown
in figure 3, which presents the trajectory of a soliton in the
unbiased biharmonic periodic field, E(t) = E0(sin(2π t/T ) +
β sin(4π t/T − ϕ)) at E0 = 0.08, β = 0.6, ϕ = π/2.

Note that the case of D = 0, d �= 0 applies to
polyacetylene with alternating chemical bonds [3], while d =
D = 0 corresponds to a simple chain with one atom in a unit
cell with the lattice constant a/2. From figure 3(b) we see that,
even in such simple systems, the ratchet effect takes place!

The ratchet phenomenon in molecular chains can be
explained qualitatively. For properly chosen values of the
system parameters, when the polaron size is not too small,
equations (7) can be studied in the continuum approximation
(see, e.g., [2]). As is well known, in this approximation, after
elimination of the vibrational variables, equations (7) can be
reduced to the nonlinear Schrödinger equation (NLSE), with a
cubic nonlinearity, for the electron wavefunction. In general
this equation contains also additional terms which describe
corrections due to the external field, dissipation, and lattice
discreteness. These additional terms can be treated as small
perturbations provided the field and dissipation are sufficiently
weak. In the leading order approximation the NLSE has the
well known soliton solution. The perturbation theory [2, 8, 10]
with respect to additional terms gives the dynamic equation for
the c.m. coordinate of the soliton, R(t):

Ms R̈ + γ Ṙ − f (R) − E(t) = 0, (9)
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Figure 3. Position of the c.m. of the soliton as a function of time in an external biharmonic field at G = 0.4, E0 = 0.08, β = 0.6, ϕ = π/2,
T = 1000 in a symmetric chain at (a) C = 0.22, d = 0.1, D = x = w = m = 0; (b) C = 0.25, d = D = x = w = m = 0.

where Ms is the effective mass of the soliton, ‘dressed’ with
phonons, γ ∝ η [10], and f (R) = −dUPN/dR with UPN being
the Peierls–Nabarro potential which is periodic with the same
period as the lattice [8].

Equation (9) is of a type leading to the ratchet
phenomenon and it is well known that the breaking of the
symmetry of either the ratchet potential (in our case this is the
periodic potential of the Peierls–Nabarro barrier) or the driving
force is enough for this effect to take place [1, 9].

In a chain with one atom in a unit cell, the Peierls–
Nabarro potential is given by the expression UPN(R) =
U0 cos (2π R/b), where b is the lattice constant of the chain
and the height of the barrier depends on the electron–phonon
coupling [8]. A detailed study of the Peierls–Nabarro barrier
in a diatomic chain will be reported elsewhere [11]. Here we
point out that, in molecular chains with a reflection symmetry,
the Peierls–Nabarro barrier is indeed symmetrical, while in
molecular chains without a reflection symmetry, this barrier is
asymmetrical. This fact explains our numerical results shown
in figures 2 and 3, and can also be demonstrated by the motion
of a polaron in a dc field. As is clear from equation (9), the
presence of the Peierls–Nabarro potential results in the pinning
of the soliton by the lattice and, in a static electric field, the
soliton can move if the external field exceeds some threshold
value. In a symmetric chain this threshold is symmetric for
fields E and −E , and it is asymmetric for chains without
reflection symmetry. We have studied the dynamics of the
soliton governed by the discrete equations (7) in a constant
field and have proved that Eth(E) = Eth(−E) for symmetric
chains, while Eth(E) �= Eth(−E) for asymmetric ones, as is
shown in figure 4.

In conclusion, our study has shown that the ratchet
effect can take place in one-dimensional molecular systems
which admit large polarons (solitons). Such self-trapped
electron states are formed at intermediate values of the electron
interaction with lattice deformations. The coupling constant of
this interaction has to be large enough, as the Peierls–Nabarro

Figure 4. Dependence of the average soliton velocity on the constant
electric E field for G = 0.4, C = 0.22, b = 0.5 and (a) D = d = 0;
(b) D = 0, d = 0.1; (c) D = 0.1, d = 0.1; (d) D = 0.2, d = 0.1.

barrier is essential for the dynamics of the soliton; on the other
hand, this coupling should not be very large, to prevent the
formation of small polarons, whose transport properties are
qualitatively different from those of the solitons.

Notice that, similarly to the deterministic fields considered
here, a symmetric white noise [12] can also cause uni-directed
current of solitons in low-dimensional molecular systems,
though the dynamics of solitons in such cases is less symmetric
and more complicated than in the harmonic fields discussed
here (we plan to report on this in the near future).

Furthermore, there is a class of low-dimensional
compounds, such as polyacetylene (PA), polythiophene (PT),
etc, which provide experimental evidence for the existence
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of large polarons and bipolarons [3, 5, 6]. On the basis
of our results we expect that, in these compounds, the
unbiased alternating electric field can induce a directed
current. In the compounds with an asymmetric unit cell,
such as polyphenylenevinylene or polythienylenevinylene, this
directed current can be induced by a harmonic periodic field,
while in compounds with a symmetric unit cell, such as PA, PT,
polyphenylene, polypyrrole, etc, this effect can be observed
in biharmonic, or, generally, in asymmetric in time, periodic
fields.
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